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The Mindful Filter
Free Energy and Action

Karl J. Friston

Abstract

This chapter frames key questions about embodied cognition and action in terms of 
 active inference; namely, the premise that the brain is trying to infer the causes of its 
sensory input—and samples that input to minimize uncertainty about its inferences. 
This provides a process theory for embodied exchanges with the world that can be cast 
as a  Bayesian fi lter—or more simply  predictive coding—equipped with classical re-
fl exes. The ensuing (embodied inference) perspective raises interesting questions about 
 embodiment and  enactivism:  Can we ever truly observe worldly states? Are there such 
things as  representations? Can we make inferences about other agents who are mak-
ing inferences about us? These questions are unpacked in terms of the  unobservability 
assumption,  sensorimotor contingency theory, and the active inference perspective on 
mirror neurons and inferring the intention of others. 

Active Inference and Predictive Coding

This  chapter begins with a brief overview of active inference, with a particular 
focus on process theories and implementation in the embodied brain. Predictive 
coding will be used as a metaphor for neuronal message passing, as we con-
sider how the basic imperatives of the Bayesian brain (predictive coding) can 
be met through active sampling of the sensorium. Having established the basic 
idea, I conclude with a statement of the three basic questions articulated above 
and the constraints afforded by active inference.

Recent advances in theoretical neuroscience have inspired a (Bayesian) 
paradigm shift in cognitive neuroscience. This shift is away from the brain as 
a passive fi lter of sensations—or an elaborate stimulus-response link—toward 
a view of the brain as a statistical organ that generates hypotheses or fantasies 
(fantastic: from Greek phantastikos, the ability to create mental images, from 
phantazesthai), which are tested against sensory evidence (Gregory 1968). 
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98 K. J. Friston 

This perspective dates back to the notion of  unconscious inference (Helmholtz 
1866/1962) and has been formalized in recent decades to cover deep or hierar-
chical Bayesian inference—about the causes of our sensations—and how these 
inferences induce  beliefs, movement, and behavior (Dayan et al. 1995; Lee and 
Mumford 2003; Friston et al. 2006; Hohwy 2013; Clark 2013b).

Predictive Coding and the Bayesian Brain

Modern formulations of the Bayesian brain—such as predictive coding—
are among the most popular explanations for neuronal message passing 
(Srinivasan et al. 1982; Rao and Ballard 1999; Friston 2008; Clark 2013b). 
Predictive coding is a biologically plausible process theory for which there is 
a considerable amount of anatomical and physiological evidence (Mumford 
1992; Friston 2008). For a review of canonical microcircuits and hierarchical 
predictive coding in perception, see Bastos et al. (2012); for a treatment of 
the motor system, see Adams, Shipp et al. (2013) and Shipp et al. (2013). In 
these schemes, neuronal representations in higher levels of cortical hierarchies 
generate predictions of representations in lower levels. These top-down predic-
tions are compared with  representations at the lower level to form a  predic-
tion error (usually associated with the activity of superfi cial pyramidal cells). 
The ensuing mismatch signal is passed back up the hierarchy to update higher 
representations (associated with the activity of deep pyramidal cells). This 
recursive exchange of signals suppresses prediction error at each and every 
level to provide a hierarchical explanation for sensory inputs, which  enter at 
the lowest (sensory) level. In computational terms, neuronal activity encodes 
beliefs or probability distributions over states in the world that cause sensa-
tions (e.g., my visual sensations are caused by a face). The simplest encoding 
corresponds to representing the belief with the expected value or expectation 
of a (hidden) cause. These causes are referred to as hidden because they have 
to be inferred from their sensory consequences. We will see later that these 
expectations are not limited to beliefs about the causes of sensations but in-
clude expectations about how those sensations are sampled through action. In 
summary, beliefs about hidden causes are engendered by ascending prediction 
errors, reporting sensory information that has yet to be explained. When these 
expectations are endowed with dynamics, descending predictions can preempt 
or anticipate sensory trajectories, thereby minimizing prediction errors as the 
sensorium unfolds.

Predictive coding represents a biologically plausible scheme for updating 
beliefs about states of the world using sensory samples (Figure 6.1). In this 
setting, cortical hierarchies become a neuroanatomical embodiment of how sen-
sory signals are generated; for example, a face generates luminance surfaces 
which generate textures and edges and so on, down to retinal input. This form of 
hierarchical inference explains a large number of anatomical and physiological 
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facts (Friston 2008; Adams, Shipp et al. 2013; Bastos et al. 2012). In brief, it 
explains the hierarchical nature of cortical connections, the prevalence of back-
ward connections, as well as many of the functional and structural asymme-
tries in the extrinsic (between region) connections that link hierarchical levels 
(Zeki and Shipp 1988). These asymmetries include the laminar specifi city of 
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Figure 6.1  Hierarchical message passing in predictive coding using the (simplifi ed) 
neuroanatomy of a songbird. Neuronal activity encodes expectations about the causes 
of sensory input, where these expectations minimize  prediction error. Prediction error 
is the difference between (ascending) sensory input and (descending) predictions of 
that input. This minimization rests upon recurrent neuronal interactions among differ-
ent levels of the cortical hierarchy. The available evidence suggests that superfi cial 
pyramidal cells (red triangles) compare the expectations (at each level) with top-down 
predictions from deep pyramidal cells (black triangles) of higher levels. Left: the equa-
tions represent the neuronal dynamics implicit in predictive coding. Prediction errors 
at the i-th level of the hierarchy are simply the difference between the expectations 
encoded at that level and top-down predictions of those expectations. The expectations 
per se are driven by prediction errors so that they perform a gradient ascent on the sum 
of squared (precision weighted) prediction error. [See Appendix for a detailed explana-
tion of these (simplifi ed) equations.] Right: scheme of the songbird’s auditory system,  
showing the putative cells of origin of ascending or forward connections that convey 
(precision weighted) prediction errors (red arrows) and descending or backward con-
nections (black arrows) that construct predictions. In this example, area X sends predic-
tions to the higher vocal center, which projects to the auditory thalamus. However, the 
higher vocal center also sends proprioceptive predictions to the hypoglossal nucleus, 
which are passed to the syrinx to generate vocalization through classical refl exes. These 
predictions can be regarded as motor commands, while the descending predictions of 
auditory input correspond to corollary discharge. Note that every top-down prediction 
is reciprocated with a bottom-up prediction error to ensure predictions are constrained 
by sensory information. The Lorenz attractors associated with higher levels of the hi-
erarchy indicate that generative models in the brain can possess autonomous, and pos-
sibly chaotic, dynamics with deep (hierarchical) structure (for details, see Kiebel et al. 
2009; Friston and Kiebel 2009).
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forward and backward connections, the prevalence of nonlinear or modulatory 
backward connections (that embody interactions and nonlinearities inherent in 
the generation of sensory signals), and their spectral characteristics—with fast 
(e.g., gamma) activity predominating in forward connections and slower (e.g., 
beta) frequencies that accumulate evidence (prediction errors) ascending from 
lower levels. 

Precision and the Encoding of (Un)certainty

One can regard ascending  prediction errors as broadcasting “newsworthy” in-
formation that has yet to be explained by descending predictions. However, the 
brain has to select the channels it listens to—by adjusting the volume or gain 
of prediction errors that compete to update expectations in higher levels (Clark 
2013a). Computationally, this gain corresponds to the precision or confi dence 
associated with ascending prediction errors. However, to select prediction er-
rors, the brain has to estimate and encode their precision (i.e., inverse vari-
ance). Having done this, prediction errors can then be weighted by their preci-
sion so that only precise information is accumulated and assimilated at high 
or deep hierarchical levels. As with all expectations, expected precision maxi-
mizes Bayesian model evidence (see Appendix). In other words, not only does 
the brain have to infer the causes of sensations, it also is in the diffi cult game 
of inferring the context, in terms of the reliability of prediction errors at each 
level of the hierarchy and the implicit confi dence in associated predictions.

The implicit broadcasting of precision-weighted prediction errors rests on 
 synaptic gain control (Moran et al. 2013). This neuromodulatory gain con-
trol corresponds to a (Bayes-optimal) encoding of precision in terms of the 
excitability of neuronal populations reporting prediction errors (Feldman and 
Friston 2010; Shipp et al. 2013). This may explain why superfi cial pyrami-
dal cells have so many synaptic gain control mechanisms, such as NMDA 
receptors and classical neuromodulatory receptors like D1 dopamine recep-
tors (Goldman-Rakic et al. 1992; Braver et al. 1999; Doya 2008; Lidow et al. 
1991). Furthermore, it places excitation- inhibition balance in a prime position 
to mediate precision-engineered message passing within and among hierarchi-
cal levels (Humphries et al. 2009). The dynamic and context-sensitive control 
of precision has been associated with attentional gain control in sensory pro-
cessing (Feldman and Friston 2010; Jiang et al. 2013) and has been discussed 
in terms of affordance in active inference and  action selection (Frank et al. 
2007; Cisek 2007; Friston, Shiner et al. 2012). Crucially, the delicate balance 
of precision over different hierarchical levels has a profound effect on infer-
ence, and may also offer a formal understanding of false inference in psycho-
pathology (Fletcher and Frith 2009; Adams, Stephan et al. 2013). We will see 
that it also plays a crucial role in  sensory attenuation.
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Active Inference and Action

So far, we have only considered the role of predictive coding in perception 
or  perceptual inference, through minimizing  prediction errors. However, there 
is another way to minimize prediction errors; namely, by resampling sensory 
inputs so that they conform to predictions. This is known as  active inference 
(Friston et al. 2011). In active inference, action is regarded as the fulfi lment of 
descending proprioceptive predictions by classical  refl ex arcs. In more detail, 
the brain generates continuous proprioceptive predictions about the expected 
location of the limbs and eyes, and these predictions are hierarchically consis-
tent with the inferred state of the world. In other words, we believe that we will 
execute a goal-directed movement, and this belief is unpacked hierarchically 
to provide proprioceptive and exteroceptive predictions. These predictions are 
then fulfi lled automatically by minimizing  proprioceptive prediction errors at 
the level of the spinal cord and cranial nerve nuclei (see Adams, Shipp et al. 
2013 and Figure 6.1). Mechanistically, descending proprioceptive predictions 
provide a target or set point for peripheral refl ex arcs, which respond by mini-
mizing (proprioceptive) prediction errors.

The argument here is that the same inferential mechanisms underlie appar-
ently diverse functions (e.g., exteroception in the visual cortex, interoception 
in the insula, and motor control in the motor cortex). Crucially, because these 
modality-specifi c systems are organized hierarchically, they are all contextual-
ized by the same conceptual (amodal) expectations that generate descending 
predictions in multiple (exteroceptive, interoceptive and proprioceptive) mo-
dalities. In short, action and perception are facets of the same underlying im-
perative; namely, to minimize hierarchical prediction errors through selective 
sampling of sensory inputs. However, there is a potential problem:

Action and Sensory Attenuation

If proprioceptive prediction errors can be resolved by engaging classical re-
fl exes (action) or changing expectations (perception), how does the brain adju-
dicate between these two options? The answer lies in the precision afforded to 
(proprioceptive) prediction errors and the consequences of movement sensed 
in other modalities. To engage classical refl exes, it is necessary to increase their 
gain through augmenting the precision of (efferent) proprioceptive prediction 
errors that drive neuromuscular junctions. However, to preclude (a veridical) 
inference that the movement has not yet occurred, it is necessary to attenu-
ate the precision of (afferent) prediction errors that would otherwise update 
kinematic expectations or beliefs (Friston et al. 2011). Put simply, my prior 
belief that I am moving can be subverted by sensory evidence to the contrary; 
thereby precluding movement. In short, it is necessary to attenuate all of the 
sensory consequences of moving—leading to an active inference formulation 
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of sensory attenuation. Sensory attenuation is the psychological phenomena 
where the magnitude of self-made sensations are perceived as less intense 
(Brown et al. 2013). 

In Figure 6.1, the (afferent)  proprioceptive prediction error was omitted 
from the hypoglossal nucleus (for discussion of this omission and the agranu-
lar nature of motor cortex, see Shipp et al. 2013). This renders descending 
proprioceptive predictions motor commands, where the accompanying extero-
ceptive predictions become corollary discharge. The ensuing  motor control is 
effectively open loop. However, the hierarchical generation of proprioceptive 
predictions is contextualized by sensory input in other modalities, which reg-
ister the sensory consequences of movement. These sensory consequences are 
transiently attenuated during movement. In summary, to act, one needs to tem-
porarily suspend  attention to the consequences of action in order to articulate 
descending predictions (Brown et al. 2013). With this conceptual framework 
in place, let us now consider some key questions it raises about the nature of 
 representation and mindful action.

Some Key Questions

The fi rst question raised by the above formalism is whether causes of sensa-
tions can ever be observed or perceived. Put simply, is perception the same 
as inference or are they somehow distinct? This argument becomes particu-
larly acute when inferring the mental state of others, where one might call upon 
generative models of self-made acts to infer the intentions of others (Kilner et 
al. 2007; Teufel et al. 2010; Brown and Brüne 2012). For example, Bohl and 
Gangopadhyay (2013) distinguish among several versions of what they term 
 unobservability assumption, as discussed by Michael and De Bruin (2015):

1. It may be understood as a phenomenological thesis: one does not expe-
rience oneself as perceiving others’ mental states, that is, others’ mental 
states do not (ever?) have the same kind of vividness or experiential 
presence as colors and shapes. Here, phenomenologists might urge that 
perceiving someone’s sadness, for example, is a qualitatively different 
experience from merely believing that they are sad, and that this is a 
distinction to which we should do justice. 

2. It may be interpreted as a metaphysical thesis: mental states cannot be 
perceived because they are immaterial entities. 

3. It may be read as an epistemological thesis: perceptual experiences do 
not ground judgments about others’ mental states, at least not without 
the help of inference and background knowledge. 

4. It may be understood as a psychological thesis about the processes by 
which we come to ascribe mental states to others (i.e., these are not 
perceptual processes). 

From “The Pragmatic Turn: Toward Action-Oriented Views in Cognitive Science,” 
Andreas K. Engel, Karl J. Friston, and Danica Kragic, eds. 2016. Strüngmann Forum Reports, vol. 18, 

series ed. J. Lupp. Cambridge, MA: MIT Press. ISBN 978-0-262-03432-6. 



 The Mindful Filter: Free Energy and Action 103

Mainstream approaches argue that even if we do perceive (some of) others’ 
mental states, we still need to account for how this is achieved. Mainstream 
accounts of  mind reading attempt to do this. Herschbach (2008), Michael 
et al. (2014), and Lavelle (2012) argue that mind-reading approaches offer 
accounts of the subpersonal inferential processes that underlie mental state 
ascriptions. 

A fi rst question, then, is: Just what version of  unobservability assumption 
is affi rmed or presupposed by which approach? The basic issue behind this 
question is whether there is something peculiar about  theory of mind that dis-
tinguishes it from subpersonal inferences normally associated with percep-
tion (e.g., in the context of  unconscious inference as proposed by Helmholtz 
1866/1962). Clearly, one key difference between inferences about a world that 
contains other agents is that they have to be hierarchically deeper than the 
more elemental (possibly unconscious) inferences about, say, visual features. 
However, one may ask whether this is a suffi cient distinction to dissolve ques-
tions posed by the unobservability assumption. 

A second question is whether the brain entertains  representations. In radi-
cal versions   embodiment, representations per se are precluded. This is nicely 
articulated by Anil Seth in his treatment of  predictive coding or processing 
(PP) (Seth 2015):

The notion of  counterfactual predictions connects PP with what at fi rst glance 
seems its natural opponent: “enactive” theories of perception and cognition 
which explicitly reject internal models or representations (Hutto and Myin 2013; 
Thompson and Varela 2001). Central to the enactive approach are notions of 
“ sensorimotor contingencies” and their “mastery” (O’Regan and Noë 2001), 
where a sensorimotor contingency refers to a rule governing how sensory signals 
change in response to action. Accordingly, the perceptual experience of, for ex-
ample, redness is given by an implicit knowledge (mastery) of the way red things 
behave, given certain patterns of behavior. Mastery of sensorimotor contingen-
cies is also said to underpin perceptual presence: the sense of subjective reality 
of the contents of perception (Noë 2006). From the perspective of PP, mastery 
of a sensorimotor contingency corresponds to the learning of a counterfactu-
ally equipped predictive model, connecting potential actions to expected sensory 
consequences. The resulting theory of Predictive Perception of Sensorimotor 
Contingencies provides a much needed reconciliation of enactive and predictive 
theories of perception and action. 

Clearly, there is some consilience between active inference (predictive pro-
cessing) and  sensorimotor contingency theory. The inferences we make about 
our sensations are (at some level) amodal and entail necessarily predictions of 
a proprioceptive sort—consistent with our embodied interactions with objects 
causing sensations. This is true even at the level of visual searches (Wurtz et 
al. 2011). Do posterior beliefs, then, constitute representations? The active in-
ference story suggests that the answer is yes—although the answer is nuanced 
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to consider probabilistic representations. Does the encoding of expectations 
(suffi cient statistics or posterior beliefs), therefore, violate the tenets of radical 
 embodiment and, if so, what are the implications for this and other theoretical 
formulations?

A related issue here is whether inferences about  hidden states are conscious 
or unconscious. At what point do  unconscious inferences become conscious, 
and what is the relationship between inference and creature (or indeed state) 
 consciousness? There are clearly some relatively simple arguments about 
reportability of (state) consciousness content that require inference at a suf-
fi ciently deep hierarchical level to generate proprioceptive (or interoceptive) 
predictions that engage action. It may be that the notion of # may help organize 
the formal distinctions between conscious inferences and unconscious (sub-
personal) inferences.

Finally, we come to questions about  theory of mind and the  mirror neuron 
system, which are a necessary aspect of active inference. This is self-evident 
from the fact that the same dynamics (posterior expectations) of neuronal pop-
ulations—that occupy a privileged position in the cortical hierarchy—encode 
predictions about sensations during perception and generate motor commands 
(proprioceptive predictions) during action. Does this provide a suffi cient ac-
count of theory of mind, or does it subvert our understanding of agency in 
some fundamental way? Is it appropriate to associate the same processes un-
derlying  perceptual inference with inferences about others? What are the im-
plications of subsuming inference about low-level perceptual features and the 
intentions of others within the same hierarchical framework?

 Sensory attenuation, in particular, requires us to either act or observe—but 
not do both at the same time. Is sensory attenuation, therefore, an integral part 
of agency and a sense of  self? Can inferences about others be informed by 
predicting internal (as opposed to external) states of the world? 

This brings us to another intriguing area:  interoceptive inference and its 
putative role in inferring the  emotional states of self, and possibly others (Seth 
2013; Seth et al. 2011). Can one usefully transcribe the principles of active 
inference in the domain of motor control to emotional pragmatics and shared 
autonomic states? This is a fascinating area that speaks not just to our sense 
of self; it may also have had implications for psychopathology, when failing 
to attend or attenuate  interoceptive   prediction errors, as has been proposed in 
 autism (Happe and Frith 2006; Lawson et al. 2014; Van de Cruys et al. 2014; 
Pellicano and Burr 2012). 

In conclusion, deep questions arise from the challenges inherent in action 
and embodiment—questions that are particularly important for the notion of 
active inference. In subsequent chapters in this volume, various attempts are 
made to resolve, dissolve, or simply celebrate these questions.
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Appendix

This brief description of generalized predictive coding is based on Feldman 
and Friston (2010). A more technical description can be found in Friston, 
Stephan et al. (2010). This scheme is based on three assumptions:

1. The brain minimizes a  free energy of sensory inputs defi ned by a gen-
erative model.

2. The  generative model used by the brain is hierarchical, nonlinear, and 
dynamic.

3. Neuronal fi ring rates encode the expected state of the world under 
this model.

Free energy is a quantity from statistics that measures the quality of a model 
in terms of the probability that it could have generated observed outcomes. 
This means that minimizing free energy maximizes the Bayesian evidence for 
the generative model. The second assumption is motivated by noting that the 
world is both dynamic and nonlinear, and that hierarchical causal structure 
emerges inevitably from a separation of spatial and temporal scales. The fi nal 
assumption is the Laplace assumption, which leads to the simplest and most 
fl exible of all neural codes.

Given these assumptions, one can simulate a whole variety of neuronal pro-
cesses by specifying the particular equations that constitute the brain’s genera-
tive model. In brief, these simulations use differential equations that minimize 
the free energy of sensory input using a generalized gradient descent:

( ) ( ) ( , )t D t F .s (6.1) 

These differential equations say that neuronal activity encoding posterior ex-
pectations about (generalized) hidden states of the world …( , , , ) 
reduce free energy, where free energy, F s( , )� �μ , is a function of sensory 
inputs, …s s s s( , , , ), and neuronal activity. This is known as  generalized 
predictive coding or  Bayesian fi ltering. The fi rst term is a prediction based 
upon a differential matrix operator, D, that returns the generalized motion of 
expected hidden states, D …( , , , ). The second (correction) term is 
usually expressed as a mixture of prediction errors that ensures the changes 
in posterior expectations are Bayes-optimal predictions about hidden states 
of the world. To perform neuronal simulations under this scheme, it is only 
necessary to integrate or solve Equation 6.1 to simulate the neuronal dynam-
ics that encode posterior expectations. Posterior expectations depend upon 
the brain’s generative model of the world, which we assume has the follow-
ing hierarchical form:
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This equation describes a probability density over the sensory and hidden 
states that generate sensory input. Here, the hidden states have been divided 
into hidden states and causes ( , )( ) ( )x vi i  at the i-th level within the hierarchical 
model. Hidden states and causes are abstract variables that the brain uses to 
explain or predict sensations—like the motion of an object in the fi eld of view. 

In these models, hidden causes link hierarchical levels, whereas hidden 
states link dynamics over time. Here, ( , )( ) ( )f gi i  are nonlinear functions of hid-
den states and causes that generate hidden causes for the level below and—at 
the lowest level—sensory inputs. Random fl uctuations in the motion of hid-
den states and causes ( , )( ) ( )

x
i

v
i  enter each level of the hierarchy. Gaussian 

assumptions about these random fl uctuations make the model probabilistic. 
They play the role of sensory noise at the fi rst level and induce uncertainty at 
higher levels. The amplitudes of these random fl uctuations are quantifi ed by 
their precisions that may depend upon the hidden states or causes through their 
log-precisions ( , )( ) ( )
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This produces a relatively simple update scheme, in which posterior expecta-
tions �μ ( )i  are driven by a mixture of prediction errors �( )i  that are defi ned by the 
equations of the generative model.

(6.3)
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In neural network terms, Equation 6.3 says that error-units compute the dif-
ference between expectations at one level and predictions from the level above 
(where ( )i  are precision weighted prediction errors at the i-th level of the hi-
erarchy). Conversely, posterior expectations are driven by prediction errors 
from the same level and the level below. These constitute bottom-up and lateral 
messages that drive posterior expectations toward a better prediction to reduce 
the prediction error in the level below. In neurobiological implementations of 
this scheme, the sources of bottom-up prediction errors are generally thought 
to be superfi cial pyramidal cells, because they send forward (ascending) con-
nections to higher cortical areas. Conversely, predictions are thought to be 
conveyed from deep pyramidal cells by backward (descending) connections, 
to target the superfi cial pyramidal cells encoding prediction error (Mumford 
1992; Bastos et al. 2012).

Note that the precisions depend on the expected hidden causes and states. 
We have proposed that this dependency mediates attention (Feldman and 
Friston 2010). Equation 6.3 tells us that the (state-dependent) precisions mod-
ulate the responses of prediction error units to their presynaptic inputs. This 
suggests something intuitive— attention is mediated by activity-dependent 
modulation of the  synaptic gain of principal cells that convey sensory informa-
tion (prediction error) from one cortical level to the next. This translates into a 
 top-down  control of synaptic gain in principal (superfi cial pyramidal) cells and 
fi ts comfortably with the modulatory effects of top-down connections in corti-
cal hierarchies that have been associated with attention and  action selection. 
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